Indian Statistical Institute, Bangalore

M. Math First Year

First Semester - Measure Theory

Midterm Exam Date: 08th September 2025
Maximum marks: 30 Duration: 2 hours

Answer any five, each question carries 6 marks.

- 1. (a) What is the σ -algebra generated by singletons. Justify your answer.
 - (b) Let X be a set and $f: X \to [0, \infty]$ be a function. For any $E \subset X$, define $\mu(E) = 0$ if $E = \emptyset$ and $\mu(E) = \sup\{\sum_{x \in F} f(x) \mid F \text{ is a finite subset of } E\}$ if $E \neq \emptyset$. Show that μ is a measure. (Marks 4).
- 2. (a) Let $\mathcal{U} = \{A \subset \mathbb{R} \mid A \text{ or } A^c \text{ is countable}\}$ and μ be the measure defined by $\mu(A) = 1$ if A is not countable and $\mu(A) = 0$ if A is countable. Describe the corresponding measurable functions and their integrals (Marks 4).
 - (b) Prove that the set of points at which a sequence of measurable functions diverges is measurable.
- 3. Prove that the Lebesgue outer measure of an interval is its length.
- 4. (a) Let (X, \mathcal{A}, μ) be a measure space with $\inf_{E \in \mathcal{A}} \mu(E) > 0$. If f is an integrable function on X, prove that f is bounded a.e.
 - (b) State and prove Fatou's lemma (Marks 3).
- 5. (a) State and prove Borel-Cantelli lemma (Marks 3).
 - (b) Let (X, \mathcal{A}, μ) be a measure space and (A_n) is a descending sequence of sets in \mathcal{A} and $\mu(A_1) < \infty$. Prove that $\mu(A_n) \to \mu(\cap A_n)$.
- 6. (a) Let $S = \{\emptyset, X\}$ and define $\mu: S \to [0, \infty)$ by $\mu(\emptyset) = 0, \mu(X) = 1$. Determine μ^* -measurable sets and the Caratheodry measure induced by μ (Marks 3).
 - (b) Prove: union of μ^* -measurable sets is μ^* -measurable for a outer measure μ .
- 7. Let $\overline{\mu}$ be the Caratheodry measure induced by a nonnegative function μ defined on a collection of subsets of a set X and μ^+ be the outer measure induced by $\overline{\mu}$. Show that for $E \subset X$, we have $\mu^+(E) \geq \mu^*(E)$ and $\mu^+(E) = \mu^*(E)$ if and only if there is a μ^* -measurable set A containing E with $\mu^*(A) = \mu^*(E)$.